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1. Introduction 
In a recent talk at the 2017 Beneficial AI 
Conference, panelists Bart Selman, David 
Chalmers, Elon Musk, Jaan Tallinn, Nick 
Bostrom, Ray Kurzweil, Stuart Russell, Sam 
Harris, and Demis Hassabis were asked to 
answer the question: “Once we get to 
human-level AI, what do you think is the sort of 
timescale involved in reaching 
superintelligence?” (“Superintelligence: Science 
or Fiction?”, 2017). David Chalmers and Elon 
Musk answered that it would likely happen 
within days of achieving human-level AI, while 
Jaan Tallinn, Sam Harris, and Nick Bostrom 
said it would take years. On the other hand, 
Toby Walsh and Theodore Modis, not part of 
the panelists, have stated that superintelligence 
is unlikely to ever happen (Walsh, 2016), (Modis, 
2012). However, Demis Hassabis offers an 
alternative–it would depend on the type of 
cognitive architecture that the human-level AI is 
based on. This was my thinking exactly and 
provides the basis to my paper. I will discuss 
the different kinds of human-level AI, how each 
kind may affect the time it takes to create 
superintelligent AI and rebuttals against the 
naysayers.  
 
2. Background 
Superintelligent AI will most likely be achieved 
through human-level AI systems. We will 
assume the premise that human-level AI will 
exist one day as there are no physical laws 
currently imaginable that will prevent us from 
creating it besides lack of research.  
 
Since the birth of human civilization about 
200,000 years ago, the majority of mankind’s 

greatest technological advances have been 
achieved within the past 50 years (Susan, 
2004). At this current velocity of growth, many 
experts and business leaders in AI predict that 
it will not be long until a human-level AI is 
created. Once that happens, it won’t be long 
until superintelligence is developed, and then 
the technological singularity. 
 
2.1 The Technological Singularity 
The technological singularity is named after the 
singularity in a black hole due to their 
similarities in nature. When each of these 
respective points in spacetime is crossed, there 
is no turning back. In a black hole, it is due to 
the crossing of the event horizon. In technology, 
it is because it will trigger runaway growth that 
will lead to irreversible and unforeseeable 
technological advances that could drastically 
change the fate of humanity. The creation of 
human-level AI is commonly regarded as the 
first phase of the technological singularity. 
Although there have been predictions on when 
this event will occur, such as 2045 by Kurzweil 
(2006),  the time it may take to create this 
technology is highly variable. The second phase 
of the technological singularity is the step from 
human-level AI to superhuman-level AI or 
superintelligence. 
 
Besides human-level AI, there are many other 
possible paths to the technological singularity 
such as eugenics, nanotechnology, and a new 
form of human-computer interface (HCI) that 
would allow humans to access information near 
the speed of light (Kurzweil, 2016). These 
technologies are surely interesting and may 
also be possible, but by creating a human-level 
AI, we would solve human intelligence and have 



the extra brain power to research other 
technologies at an increased rate. Once 
human-level AI is created, we would be able to 
speed up the research performed by these AIs 
and produce research results in all other fields. 
Currently, almost all of the leading researchers 
in AI and believe superintelligence is the most 
likely path to the technological singularity. 
 
For the purposes of this paper, I will treat 
superintelligence and the technological 
singularity as one because superintelligence 
will trigger runaway technological growth that 
will result in inexplicable and irreversible 
changes. It is also one of the most discussed 
scenarios for achieving the technological 
singularity. 
 
2.2. Artificial Intelligence 
As the field of AI continues to develop, one 
transition that we are currently seeing is from 
application-specific AI to general AI. Currently, 
applications of narrow AI are responsible for 
producing your Facebook news feed, 
personalized advertisements, and the computer 
vision software in self-driving cars. Other 
applications of narrow application-specific AI 
include IBM’s Deep Blue computer program 
which beat Garry Kasparov, the former world 
champion in chess in May 1997 (McPhee et. al., 
2015). Recently, Alphabet Inc.’s Google 
DeepMind AlphaGo computer program also 
beat the world champion Lee Sedol in the 
ancient game of Go (“Google’s AlphaGo beats 
Go master,” 2016). So far, we have been 
incredibly successful in developing this type of 
AI. In contrast, we have not been as successful 
in developing general AI. 
 
General AI, artificial general intelligence (AGI), 
or human-level AI is defined by Murray 
Shanahan (2015)  as an AI that “can match the 
performance of an average human in all, or 
nearly all, spheres of intellectual activity”. Both 
computer scientists and cognitive scientists 

find this type of AI to be incredibly difficult to 
create. Instead of discussing the paths to 
human-level AI–for the sake of this paper–we 
will assume the premise of human-level AI 
technology and focus on what could happen 
thereafter. 
 
3. Human-Level AI Scenarios 
Before we get ahead of ourselves, it is natural 
to assume that the paths to superintelligent AI 
will depend on the availability of human-level AI. 
Without human-level AI, superintelligent AI may 
still be possible, but highly unlikely. A similar 
analogy would be the unlikely creation of a 
MacBook Pro before the invention of the ENIAC 
vacuum computer. Although some countries in 
Africa can leapfrog the innovation gap and 
jump straight to mobile phones without needing 
to invent landline phones, (“What technology 
can do for Africa”, 2017) it is uncertain and 
impossible to predict whether that will happen 
to the human race. 
 
Human-level AI may be created in various ways 
and each realization of human-level AI may 
inherently lead to a different path to 
superintelligent AI. For example, a primarily 
algorithmic human-level AI may be easily 
duplicated leading to collective 
superintelligence, while this may not be 
possible for a primarily hardware-based 
human-level AI that requires many more 
resources to duplicate. Biological human-level 
AIs have the same biological limitations that 
humans do and so this type of human-level AI 
developing into superintelligence is unlikely 
(Bostrom 2014). Software-based  human-level 
AIs may differ vastly from one another, and 
each specific detail in its design may lead to 
different scenarios. We will explore different 
types of these artificial human-level AI in detail, 
see how each type may lead to superintelligent 
AI, and their challenges. 
 
3.1 Software-Based 



A piece of software cannot exist without its 
hardware counterpart. At its core, software is 
just the manipulation of bits through transistors 
and circuits. However, a software-dominant 
human-level AI may require less physical 
resources than a hardware-dominant one. In 
current AI research, we have developed 
machine learning techniques such as deep 
learning and neural networks that can help us 
classify objects and generate novel pictures 
that are almost indistinguishable from real 
pictures. Deep learning can be used to identify 
the objects in a picture. However, in order to do 
this accurately, deep learning models require 
billions of training examples (Shazeer et. al., 
2017) and immense parallelized processing 
power to train the models and help them make 
inferences. Even if we have the storage 
capacity for the data, it still requires multiple 
GPUs and a couple of hours to train such a 
model. A software-based human-level AI 
system could use more efficient algorithms and 
take advantage of parallel processing 
capabilities to reduce the time needed to train 
massive neural networks. (Chung et. al., 2016) 
It may be possible for such algorithm to reduce 
the runtime and processing power of current 
programs by multiple orders of magnitude. 
 
If we take a look at our only known example of 
intelligence, the human brain is much more 
algorithmically efficient than our current 
machine learning techniques. A toddler only 
needs a to have seen a few dogs and cats to be 
able to distinguish a cat from a dog with high 
accuracy. If a machine learning algorithm only 
required as many examples as a toddler, then 
we could forgo the large storage capacity 
required to store all the training data. 
 
Certain programming languages can also 
improve the efficiency of a system. Compiled 
languages such as Fortran, C, and C++ are able 
to make faster calculations than interpreted 
languages such as Python. (Bright, 2014) To 

turn the code into instructions in the registers at 
the hardware level, a computer must have 
programs that interpret the code. For a 
compiled language such as C++, the source 
code is first parsed to detect typos and 
semantic mistakes such as calling a function 
that doesn’t exist. Next, a code generator is 
used to produce executable code that is then 
executed by the machine. An interpreted 
language such as Python, on the other hand, 
must go through additional steps such as 
looking up functions already contained in the 
language before being executed by the 
program. Each additional layer will reduce 
performance. In general, Python code is less 
verbose and simpler to learn and write for the 
typical software engineer and offers more 
support via libraries. C++ requires more 
boilerplate code but will run faster. 
Programming languages’ seem to have a 
tradeoff between ease of use and performance. 
Modern approaches to programming have 
evolved from punchers to high-level languages 
such as Octave in order to reduce the learning 
curve for programming. Once programs have 
been algorithmically verified and written, it is 
not unusual to see a program translated into 
more efficient languages. Advances in 
compilers and programming languages may be 
able to further speed up the runtime at the 
software level. 
 
Another factor related to increased 
computational efficiency is an algorithm’s 
complexity. In computer science terms, the 
worst time complexity of an algorithm is 
described used what is called big O notation. 
Intuitively, the big O notation of an algorithm 
will describe the runtime growth rate as the 
number of data increases. For example, an 
algorithm that sorts a hand of cards that 
iterates through the cards and handpicks the 
card with the largest value and places it on the 
far right has a big O notation of O(n2). 
Conceptually, this means that each additional 



card in the hand will increase the runtime by a 
factor of n2. If sorting 2 cards using this 
algorithm used 4 operations, sorting 100 cards 
would use 10,000 operations. A more efficient 
algorithm such as quicksort, which I will not go 
into detail here, has a more efficient runtime of 
O(n log2n). Sorting 2 cards with this algorithm 
would use 0.6 operations while sorting 100 
cards using quicksort would use only 200 
operations. As the number of cards increase, it 
is obvious how increases in algorithmic 
complexity could affect the runtime. While 
multiplying matrices has a complexity bounded 
by O(n3), using Virginia Williams’ algorithm 
based on the Coppersmith-Winograd 
construction (2014) can result in an bound of 
O(n2.373). It should be noted that boosted 
algorithms such as Williams’ has a large 
constant and will only be effective under 
specific circumstances. Improvements in 
algorithmic complexity can further speed up the 
efficiency of a software-based human-level AI. 
 
If the software for this type of AI requires less 
data and is more efficient to run, then such a 
human-level AI will not require nearly as much 
computing power. The extent to which our 
algorithms will be able to reduce the amount of 
hardware necessary for creating human-level AI 
remains unknown, but if both the software and 
hardware capabilities for a human-level AI 
system become mature enough, then AI 
becomes just another program like Microsoft 
Word. We could then we can imagine a 
situation where we easily duplicate these 
programs. Even if the application were very 
large and needed a few exabytes of storage, 
with our current growth in storage capacity, it 
wouldn't be long before we will be able to have 
a computing device that could easily store the 
AI system. If we think back to floppy disks, a 
large flat rectangular storage device could only 
contain up to a few hundred kilobytes of data. It 
would have been unthinkable to use those 
storage devices and transfer even a 

high-resolution picture which may take up to ten 
megabytes of storage. 
 
A software-based AI that is extremely efficient 
can come in various forms. A human-level AI 
can be imagined to require varying orders of 
magnitudes of processing power and storage. It 
can be computationally efficient to run on 
portable computing, specialized hardware such 
as a home desktop computer, a supercomputer 
such as China’s Sunway TaihuLight, IBM 
Sequoia, a megastructure such as the Large 
Hadron Collider or the Dyson Sphere (Stapledon 
, 1937). Each of these varying levels of 
computing power are necessary for 
human-level AI and would greatly alter the path 
leading up to superintelligent AI. For the sake of 
simplicity, we will look at two cases. The first is 
a human-level AI that is accessible to the 
general public. Although it may require special 
hardware, anybody who is decently well-off 
would be able to purchase such a system. Next, 
we will imagine the case where a human-level 
AI requires the resources that only the largest 
corporations or countries could afford. For 
future reference, let us denote the first type of 
AI as Type S1 for the smaller software-based 
human-level AI and Type S2 for the larger 
software-based human-level AI. 
 
There are plenty of ways the software could 
become efficient enough to reduce the load on 
the hardware, but more importantly, 
software-based human-level AI requires a 
programmed cognitive architecture that may 
utilize current and new AI and machine learning 
techniques. The blueprint to such a cognitive 
architecture that has human-level intelligence is 
still in the workings, but as long as it is like 
other programs that we have created thus far 
then such an AI program should also be 
feasible. 
 
The difference between software-based AI and 
hardware-based AI is that software-based AI is 



not reliant on a special type of hardware. As 
long as our current machines continue 
advancing, the software is a possible solution 
to creating a human-level AI. 
 
3.2 Hardware-Based 
The alternate realization of a human-level AI 
may not result from advances in software but 
enhancements in hardware. The most 
straightforward hardware-based approach to 
human-level AI is whole brain emulation.  
 
If we obtain ample processing power to fully 
simulate the brain and create hardware 
components that mimic each component in the 
human brain, then it seems reasonable to 
assume that we would then have a machine 
that acts just like the brain. 
 
This hardware-based approach of human-level 
AI could be accomplished through 
Copy-and-Transfer, which involves mind 
uploading through scanning and mapping the 
salient features of a biological brain and then 
copying, transferring and storing that 
information state into a computer system. The 
simulated mind could then reside within a 
virtual reality or simulated world.  
 
When asked whether simulating the entire 
human brain was possible, Henry Markam 
(2007), lead researcher of the “Blue Brain 
Project” replied:  

“It will be very difficult because, in the 
brain, every molecule is a powerful 
computer and we would need to simulate 
the structure and function of trillions 
upon trillions of molecules as well as all 
the rules that govern how they interact. 
You would literally need computers that 
are trillions of times bigger and faster 
than anything existing today.“ 

 
An approach like this would be different from 
the Types S1 human-level AI as it would 

obviously require specialized and intensive 
hardware that most people would not have 
access to. Once successfully developed, many 
of these whole brain emulation supercomputers 
could be owned by select companies and 
countries. They could be distributed to 
communities and act as a community librarian 
as imagined in the future in The Time Machine 
(Wells 1995). For future reference, let us denote 
this type of human-level AI as Type H. 
 
3.3 Software and Hardware-Based 
The approaches discussed previously are either 
software focused or hardware focused. 
However, there is another approach that 
contains both specialized software and 
hardware that would need tremendous research 
efforts to make a reality. This differs from the 
previous approaches because we cannot just 
continue advancing in the same areas that we 
are currently developing in order to achieve this 
approach. We cannot just innovate horizontally 
by improving what we already know. We must 
innovate vertically and come up with entirely 
novel ideas and technologies (Thiel and 
Masters, 2014). According to Thiel, 

“Horizontal or extensive progress means 
copying things that work -- going from 
one to n. Horizontal progress is easy to 
imagine because we already know what 
it looks like. Vertical or intensive 
progress means doing new things, going 
from zero to one.” 

 
This software and hardware approach has 
software that is able to mimic the human brain 
but has a robotic body in order to make it a 
complete human-level AI. This approach comes 
from the embodied cognition theory which 
states that there are many features of cognition 
that are entirely dependent on the body of the 
organism. Thus, in order to create human-level 
AI, it may be necessary to create both the mind 
and the body. Similar to the case with the 
software-based approaches, not only would 



such a realization of human-level AI require 
research in cognitive architectures but could 
also require anthropomorphic features such as 
senses and actions to become a human-level 
AI. 
   
Why is embodiment necessary? For starters, we 
have the computation required to simulate the 
processing power of the brain of a bee, yet we 
still have not been able to create a simulation of 
a bee. Besides the lack of the bee’s 
embodiment, other reasons for this lack of 
progress could be due to an oversimplified 
model of the neural cells and a poor 
understanding of higher cognitive processes. 
(Clark and Chalmers, 1998) 
 
This kind of human-level AI could fall 
somewhere between Type S1 and Type S2 in 
terms of accessibility and affordability after 
some amount of time. Initially, it may seem 
plausible that there would only be prototypes 
developed by a large research company and 
would be extremely expensive to manufacture. 
This kind of AI would be least likely to advance 
into superintelligent AI quickly. If the cost of 
such a robot decreased over time as the 
economies of scale came into play; it may even 
be possible to have these human-level AIs 
working day and night to create more and more 
of themselves. Duplication of such a 
human-level AI would not lead to 
superintelligent AI, but is much more likely to 
result in recursive self-improvement. 
 
4. Paths to Superintelligence 
 
4.1 Duplication 
As with any other piece of software, a 
human-level AI system such as Type S1 could 
be easily copied. Since Type S1 requires 
inexpensive hardware, a wealthy person would 
be able to own many of these systems. A large 
corporation or country could fund thousands to 
millions of these systems. 

 
Similar to a human, a human-level AI may be an 
expert in some fields and be fairly average in 
other fields. As AIs are not biological, they 
could be programmed and trained to suit the 
needs of the user. Additionally, an AI would 
have capabilities beyond a normal human being 
such as being able to access all of the data on 
the world wide web, having a direct interface 
with computers, and being able to work in a 
different timescale compared to regular 
humans. These human-level AIs would not need 
basic human needs such as sleeping, eating, 
and other bodily functions to survive, thus 
giving them additional time to work and learn. 
These AI systems could also be sped up in a 
virtual environment. Doing so could increase 
their learning rate or productivity to many times 
faster than a normal human being. 
 
The following scenario is meant to show how a 
collective group of human-level AI can display 
superintelligence. It takes inspiration from 
Murray Shanahan (2015), but is more 
realistically detailed and brings together 
Bostrom’s knowledge on collective 
superintelligence (2014). Imagine two 
companies have one year to bring a new laptop 
computer to market. One of the companies is a 
large multinational organization with over fifty 
thousand of employees. Let’s call this company 
ECorp. ECorp has many products, patents, and 
previous generations of laptops. The other 
company is a small start-up with human-level AI 
technology. Let’s call this company AICorp. 
ECorp decides to split up and delegate different 
tasks involved in creating a new laptop to 
different sectors of the company. AICorp 
decides to generate ten off-the-shelf 
human-level AI systems that start with the 
knowledge and skills of an average college 
graduate. AICorp informs the AI systems about 
the task at hand and enrolls them in their 
relevant virtual environment graduate schools. 
Able to be sped up inside the virtual 



environment, AICorp’s employees are able to 
obtain the same education as the employees of 
the larger company in only a few weeks of real 
time. The human level AI systems do not 
require food and rest compared to the human 
employees and are capable of working and 
learning 24 hours a day in their virtual 
environment. Over just a short amount of time, 
this leads to a dramatic increase in engineering 
and research outcomes. Though ECorp had 
many more resources to begin with, and was 
able to draw on the knowledge of its past 
products, AICorp is not hindered, but instead 
has an advantage of having an entirely open 
playing-field to stretch their expertise and 
innovation. 
 
When a year has passed, and it is finally time 
for both companies to release their respective 
products, ECorp releases a new generation of 
laptops, improving from its previous iteration. It 
has a better processor, the option to upgrade to 
32 cores, a 2TB SSD, a thinner and lighter body, 
a screen with a better resolution and brighter 
colors, and other standard incremental 
improvements commonly seen in a new 
generation of laptops. For a regular company, a 
year’s time isn’t much. ECorp’s new laptop may 
have some new features such as FaceID or 
TouchID as featured in the iPhone, or a change 
to an OLED display from an IPS display, or 
include wireless charging. However, these new 
features are still incremental and are seen as 
linear improvements. 
 
Now, let’s see what AICorp is up to. Using their 
newly educated human-level AIs and much 
more simulated time than the ECorp, they are 
able to reinvent the laptop. They developed new 
technologies in almost every domain involved in 
the development of a new laptop. They made 
breakthroughs in material design, hardware, 
and software. The laptop looks like something 
from the future and looks nothing like the 
laptops we’ve used to seeing. The body is made 

up of a material with varying plasticity and can 
be rolled up like a poster, yet still has a vibrant 
screen. The laptop is built so thin that it seems 
like the hardware has nowhere to go, yet it still 
has at least an order of magnitude more 
processing power and battery capacity than 
current generation laptops. It can access 
information much faster than normal 
computers through a new type of RAM that is 
non-volatile. Additionally, it is able to read the 
user's brainwaves as a new form of 
brain-computer interface. A person can simply 
look at this magical paper-like device and it will 
do whatever they want it to do. This technology 
seems to work seamlessly with modern users 
without needing a learning curve because of 
how well it was designed. 
 
AICorp didn’t just incrementally improve a 
computer, they reinvented it using technologies 
that ECorp wasn’t even close to developing. By 
having virtually an infinite amount of simulated 
time, AICorp was able to solve research 
problems in multiple domains and use all of the 
solutions in their new product. 
 
What this example shows is that even though 
each human-level AI individually is no different 
from a normal human being, collectively, they 
display superhuman-like intelligence. To us, the 
new technology looks like magic. It would be as 
if Thomas Edison were shown the modern day 
laptop. To him, it would look like something that 
only a man with superhuman intelligence could 
have created. To us, many human-level AI 
systems working together collectively show 
superhuman level intelligence. 
 
4.2 Recursive Self-Improvement 
Another path to superintelligent AI is through 
recursive self-improvement. 
 
One example of recursive self-improvement is 
in humans. Treff, an in vitro fertilization 
specialist, has recently helped advance 



eugenics enough to be able to predict the IQs, 
genetic defects, and diseases of embryos 
(Regalado, 2017). Over time, this artificial 
selection of infants will lead to smarter humans 
who then grow up and help advance related 
fields. Each generation of humans will improve 
their ability to enhance further generations. 
Humans are currently experiencing recursive 
self-improvement in a lengthened timespan 
because we have no control over our biological 
growth factors and it takes time for humans to 
mature to a stage where we can contribute to 
improving ourselves. However, AI systems 
would not have this limitation and could 
potentially go through rapid iterations of 
recursive self-improvement within a very short 
amount of time. 
 
AI systems who are as intelligent as the 
humans who developed the program could 
build on AI, then the AI itself would be able to 
build on itself. An AI that is intelligent enough to 
redesign and update itself is known as a Seed 
AI (Yampolskiy, 2015). A Seed AI that has the 
engineering capability that matches or 
surpasses its creators would then have the 
potential to upgrade its own hardware or 
software. This more capable machine could 
then go on to develop a machine that has an 
even greater capability. These iterations of 
recursive self-improvement could accelerate, 
potentially allowing enormous quantitative 
changes before any upper limits imposed by the 
law of physics set in. 
 
Even if this process is slow at first, because 
non-biological AI systems have no biological 
needs such as sleeping and eating and can be 
easily replicated; recursive self-improvement is 
another possible path for superintelligence. 
 
5. Counter Arguments 
 
5.1 The “Meta-intelligence” argument 

According to Toby Walsh (2016), a strong critic 
against the technological singularity and 
superintelligent AI, the intelligence needed to 
perform a task is confused with the capability 
to improve the intelligence to do a task. Walsh 
claims that this is one of the strongest 
arguments against the idea of a technological 
singularity. He argues that since machine 
learning is likely to be a part of a human level AI 
system and frequently tops out at particular 
tasks, no amount of tweaking, be it feature 
engineering or parameter tuning, appears able 
to enhance their learning ability. Therefore, 
human-level AI systems will also be unable to 
enhance their learning ability. Using deep 
learning techniques to recognize speech or 
identify objects has not lead to an improvement 
in deep learning itself. Walsh also uses humans 
as an example. Our IQ has only slowly 
increased over the last century, so he ponders 
that perhaps electronic brains will also struggle 
to boost their performance quickly and never 
get beyond a fraction of their fundamental 
capabilities (Walsh, 2016). 
 
There are a few rebuttals worth mentioning 
here. First, machine learning algorithms may 
only be an insignificant part of a human level AI 
system. He bases his claim that it is “indeed 
likely” for a human level AI system to contain 
machine learning algorithms. However, it is just 
as likely that a human level AI system does not 
contain machine learning algorithms. If we 
create a human level AI system using Kurzweil’s 
proposed method of whole brain emulation, 
then there would be no need for neural 
networks or large datasets (Kurzweil, 2006). 
However, we can grant Walsh the premise of 
machine learning being part of a human level AI 
system, as it does not matter to the main 
content of my rebuttal. 
 
Walsh seems to think that because we are 
experiencing diminishing returns for scoring 
well on speech recognition or object 



classification tasks, that it will not be possible 
to advance intelligence in a human level AI 
system dramatically. Additionally, improving 
scores on these tasks through deep learning 
have not improved themselves. First, a human 
level AI system does not need to achieve higher 
scores in specific tasks such as object 
recognition and speed recognition to transition 
to show superintelligence. As explained in 4.1, 
human level AI systems may display 
superintelligent like abilities when working 
collectively and/or at an increased pace.  
 
Second, AutoML, a machine learning effort 
made by Google, has proved that a neural 
network can tune other neural networks better 
than humans can (Zoph, et. al, 2017). So, 
although Walsh is right in saying that deep 
learning techniques for object classification 
have not advanced deep learning, advances in 
one field in machine learning can help improve 
performance in other fields. Therefore, it is not 
necessary for a deep learning algorithm to 
improve its own ability to learn. It is only 
necessary for an algorithm within a program to 
advance another algorithm which can then 
advance the initial algorithm. This is another 
form of recursive self-improvement. 
 
5.2 The “Fast Thinking Dog” Argument 
According to Walsh, the argument put forward 
by proponents of the technological singularity is 
that silicon has a significant speed advantage 
over our brain’s wetware, and this advantage 
doubles every two years or so according to 
Moore’s Law (Walsh, 2016). However, speed 
does not bring increased intelligence. 
 
Pinker (2008) sums it up well:  

“There is not the slightest reason to 
believe in a coming singularity. The fact 
that you can visualize a future in your 
imagination is not evidence that it is 
likely or even possible. Look at domed 
cities, jet-pack commuting, underwater 

cities, mile-high buildings, and 
nuclear-powered automobiles all staples 
of futuristic fantasies when I was a child 
that has never arrived. Sheer processing 
power is not a pixie dust that magically 
solves all your problems.” 

 
There is a significant difference between 
superintelligence and the fantasies (domed 
cities and jet-pack commuting) that Pinker 
came up with. Just because some fantasies 
have never arrived, does not mean that all other 
fantasies will not arrive. Some “fantasies” 
dreamt up by people in the 19th century have 
become a reality. Personal drones, self-driving 
cars, hoverboards, and biometric devices are 
just a few examples of “fantasies” that were 
actualized. What determines a fantasy’s 
actualization is its current demand and 
forecasted value to society. Pinker’s examples 
of fantasies such as domed cities and jet-pack 
commuting are not inventions that bring value 
to society. Humans can barely navigate in 2D 
space. Jet-packing commuting would involve 
navigating in 3D space and would be a hazard 
to both humans wearing the jet-packs and 
pedestrians. However, self-driving cars and 
personal drones have many practical uses such 
as autonomous fleets and drone delivery 
services. There’s no practical reason for domed 
cities either. Only fantasies that are predicted to 
be valuable to society call for research and 
development.  
 
Human-level AI is a different fantasy than the 
ones Pinker mentioned because it is forecasted 
to have a monumental impact to society. 
Creating human-level AI is solving intelligence 
and doing so will essentially enable us to speed 
up research and development for all other 
technologies. It would be able to automate 
millions of low-level jobs and create more 
advanced jobs such as those in the mobile app 
industry created from the automation of 
farming. Therefore, because human-level AI is 



predicted to be extremely valuable society, it is 
much more likely to become a reality. 
 
Additionally, supporters of the technological 
singularity don’t just believe that sheer 
processing power will bring about 
superintelligence. Superintelligence is created 
from a crucial software component and 
possibly a hardware component which I went 
into detail previously. It’s accepted that more 
than just computing power is necessary to 
create human-level AI or superintelligence. 
Nobody is saying that sheer processing power 
is all you need. I would agree with Pinker and 
Walsh that processing power is part of the 
equation, but it is not the entire equation. In 
addition to other technological advances in 
domains such as cognitive architecture and 
algorithms, I see superintelligence and the 
technological singularity as certainly possible. 
 
6. Conclusion 
There are many different paths that can lead to 
the technological singularity. One possible path 
that involves artificial intelligence could happen 
in two stages. First, technology for human-level 
AI needs to be created. Next, human-level AI 
may evolve into superintelligence through ways 
such as collective superintelligence or recursive 
self-improvement.  
 
In this paper, I devise different possible 
categories of human-level AI in order to create 
more plausible scenarios for the evolution of 
superintelligence. I make distinctions amongst 
four different kinds of AI systems–two 
software-based systems, a hardware-based 
system, and a system that is both software and 
hardware-based. Because the topic of this 
paper is speculative in nature, devising these 
types allows me to build up more accurate 
scenarios depending on the type of human-level 
AI that will one day be developed. For example, 
human-level AI systems that are 
software-based such as Type S1 may lead the 

way to collective superintelligence more easily 
than Type S2 human-level AI systems.  
 
After detailing these possible types of 
human-level AI systems, I introduce two 
different ways in which a society with 
human-level AI technology could develop 
superintelligent AI. If we assume Type S1 AI 
systems, then a collective group of them could 
display superintelligent behavior while the Type 
H system could more easily develop 
superintelligence through rapid iterations of 
recursive self-improvement.  
 
Lastly, I tackle some of the existing counter 
arguments presented by naysayers of 
superintelligent AI technology and the 
technological singularity. This paper does not 
encompass all of the possible realizations of 
human-level AI or the paths that can lead up to 
the technological singularity as there are 
infinitely many possible scenarios. However, I 
try to generalize by creating four primary 
categories of human-level AI systems to build 
off of. 
 
Due to a lack of a clear path towards 
human-level AI, there is a low probability of 
predicting which type of AI system will be 
engineered. Since the timescale to develop 
superintelligence is conditional on the type of AI 
system developed, there is also a low 
probability of predicting if and when the 
technological singularity will occur. Therefore, 
this paper isn’t meant to convince you whether 
the technological will or will not happen or when 
it will happen but rather offer insights on how 
the timescale to reach superintelligence from 
human-level AI changes from scenario to 
scenario. 
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